

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

WINTER - 19 EXAMINATIONS

Subject Name: Digital Communication Systems Model Answer

Subject Code:

22428

Important Instructions to examiners:

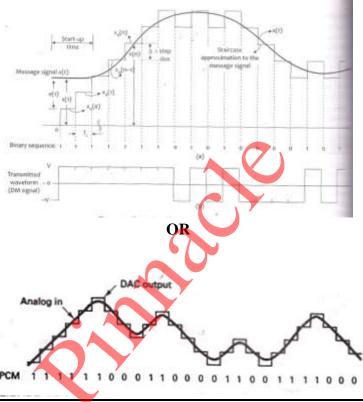
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub Q.	Answer	Marking				
No.	N.		Scheme				
			10-				
Q.1		Attempt any FIVE of the following:	Total				
			Marks				
	a)	Define (i)Bit rate (ii)Baud rate	2M				
	Ans:	(i)Bit rate :-	1M				
		Bit rate is simply the number of bits transmitted during one second and is expressed in bits	each				
		per second (bps). Mathematically bit rate is given by:-					
		$Rb = 1/T_b$					
		where Tb is time interval of one bit					
		(ii)Baud rate: - Baud is the unit of symbol rate. Baud rate is the number of symbols transmitted during one					
		second and is expressed in symbols per second or baud.					
		Mathematically, baud rate is the reciprocal of the time of one output signaling element and					
		a Signaling element (symbol) may represent several information bits. Baud rate is expressed as,					
		$Rs = 1/T_s$					
		Where, baud rate = symbol rate (symbols per second) and T_s = time interval of one symbol.					
	b)	State the Hartley's law with mathematical expression.	2M				
	Ans:	Hartley's Law / Nyquist Theorem:-					
		Statement: Hartley's Theorem/Law states that the channel capacity of the transmission					
		channel of bandwidth 'B' which carries a signal having 'M' levels in the total absence of					
	noise is given by: $\mathbf{C} = 2 \mathbf{B} \log 2 \mathbf{M}$						
		where, C – channel capacity (bits/sec)					
		B – channel bandwidth					
		M – number of coding levels (2 or more)					
		In the absence of noise, Hartley's Law shows that greater the number of levels in the					
		coding system, the greater the information rate that can be sent through the channel.					

c)	State sampling theorem. Define Nyquist rate.	2M
Ans:	SAMPLING THEOREM:	1M
	Sampling theorem states that a band-limited signal of finite energy having the highest	each
	frequency component f_m Hz can be represented and recovered completely from a set of	
	samples taken at a rate of f_s samples per second provided that $f_s \ge 2f_m$.	
	Here f_s is the sampling frequency. This theorem is also known as the Sampling Theorem for	
	Baseband or Low-pass Signals.	
	Nyquist rate:-	
	Sampling frequency should be equal to or greater than twice the maximum signal	
	frequency $(f_s \ge 2f_m)$	
d)	Classify the modulation techniques.	2M
Ans:	Classification of the modulation techniques:-	2M
	1. Amplitude Shift Keying (ASK)	
	2. Frequency Shift Keying (FSK)	
	3. Phase Shift Keying (PSK)	
e)	State two advantages of WDM technique.	2M
Ans:	ADVANTAGES OF WDM:	Any 2
	1. WDM has enhanced capacity.	1M
	2. WDM can be used for full duplex transmission with a single fiber.	each
	3. It is inherently easier to reconfigure (addition or removal of channels).	
	4. Fiber optic cable networks use optical components which are simpler and more reliable	
	and often less costly than their electronic counterparts	
f)	List the various multiple access techniques.	2M
Ans:	1. Frequency Division Multiple Access (FDMA)	½ M
	2. Time Division Multiple Access (TDMA)	each
	3. Code Division Multiple Access (CDMA)	
	4. Space Division Multiple Access (SDMA)	
g)	Define the concept of spread spectrum.	2M
Ans:	Concept of spread spectrum:-	2M
	Spread-spectrum techniques are methods by which a <u>signal</u> (e.g. an electrical, electromagnetic, or acoustic signal) generated with a particular bandwidth is deliberately	
	spread in the <u>frequency domain</u> , resulting in a signal with a wider <u>bandwidth</u> .	
	OR	
	Spread spectrum systems are intended to provide such secure and reliable communication.	
	In this system the spectrum of the transmitted signals spreaded over a very wide	
	bandwidth. This achieved in these systems by modulating for a second time, an already	
	modulated signal in such a way as to spread the power of the transmitted spread spectrum signal over a very large bandwidth.	
1	Signal over a very large bandwidth.	
	Attempt any THREE of the following:	12-
		Total
		Mark
a)	State the advantages and disadvantages of digital communication system.	4M

Ans:	Advantages of Digital Communication : (any 2)	1M
	1. High noise interference tolerance due to digital nature of the signal.	each
	2. With channel coding, error detection and correction at receiver is possible.	
	3. It provides us added security to our information signal i.e. Data encryption is possible for	
	greater security.	
	4. Cheaper due to advances in digital VLSI technology.	
	5. Digital information can be saved and retrieved when necessary.	
	6. Large data storage is possible.	
	Disadvantages of Digital Communication: (any 2)	
	1. Large System Bandwidth: - Digital transmission requires a large system bandwidth to	
	communicate the same information in a digital format as compared to analog format.	
	2. High power consumption (Due to various stages of conversion).	
	3. Needs synchronization	
	4.Sampling Error.	
b)	Draw the block diagram of DM transmitter. Explain each block in detail.	4M
Ans:	Block diagram of DM transmitter:-	2M
11119.	Block diagram of Bivi transmitter.	
	Acatog Semple and Date PCM	
	hold	
	Sampling	
	pulse Descriptional of	
	(DAC)	
	Clock counter U/D 1+up	
	0 = down	
	Explanation:-	2M
	Sample and Hold:-	
	The input analog is sampled and converted to PAM signal, which is compared with the	
	output of the DAC. The output of the DAC is a voltage equal to the regenerated magnitude	
	of the previous sample, which was stored in the up-down counter as a binary number.	
	Up-down counter:-	
	The up-down counter is incremented or decremented depending on whether the previous	
	sample is larger or smaller than the current sample.	
	The up-down counter is clocked at a rate equal to the sample rate. Therefore the up-down	
	counter is updated after each comparison.	
	Initially the up-down counter is zeroed and DAC output is 0v.	
	The first sample is taken and converted to a PAM signal, and compared with zero volts.	
	The output of the comparator is a logic 1 condition (+v), indicating that the current sample	
	is larger in amplitude than the previous sample.	
	On the next clock pulse, the up-down counter is incremented to a count of 1.The DAC now outputs a voltage equal to the mgnitude of the minimum step size (resolution). The	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)


steps change at a rate equal to the clock frequency (sample rate).

Consequently, with the input signal shown, the up-down counter follows the input analog signal up until the output of the DAC exceeds the analog sample; then the up-down counter will begin counting down until the output of the DAC drops below th sample amplitude.

Digital to Analog Converter (DAC):-

In the idealized situation the DAC output follows the input signal. Each time the up-down counter is incremented, a logic 1 is transmitted, and each time the up-down counter is decremented, alogic 0 is transmitted.

(Waveform is optional):-

c)	Explain flat top sampling with circuit diagram. Draw flat top sampled signal.	4M					
Ans:	Flat top sampling:	Diagra					
	• In flat top sampling, the top of the samples remains constant and equal to the instantaneous value of the modulating signal at the start of the sampling.						
	• Thus the amplitude of the pulse after sampling is kept constant and the top of the	Explan					
	sampled pulse do not follow the contour of the modulating signal unlike Natural	ation					
	sampling. • The duration of each sample is τ and the sampling rate is : $F_s = 1/T_s$. $T_s = 1/F_s$	2M					
	 Sample and hold circuit is used for the generation of the sampled signal to attain flat top 	Wavefo					
	sampling, which is shown in the Figure below.						
	S ₁						
	S_2 Discharge $=$ C Output						
	Figure shows the Sample and hold circuit to generate flat top samples						

- The switch S_1 closes at each sampling instant to sample the modulating signal.
- The capacitor C holds the sampled voltage for period τ at the end of which switch S_2 is closed in order to discharge the capacitor.
- Thus the signal generated as a result of sample and hold process is the flat top sampled signal. The spectrum of the generated flat top sampling signal along with the modulating signal and the sampling signal is shown below in Figure 2 below.

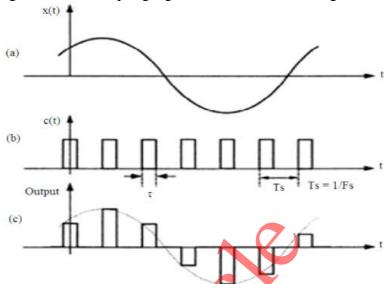
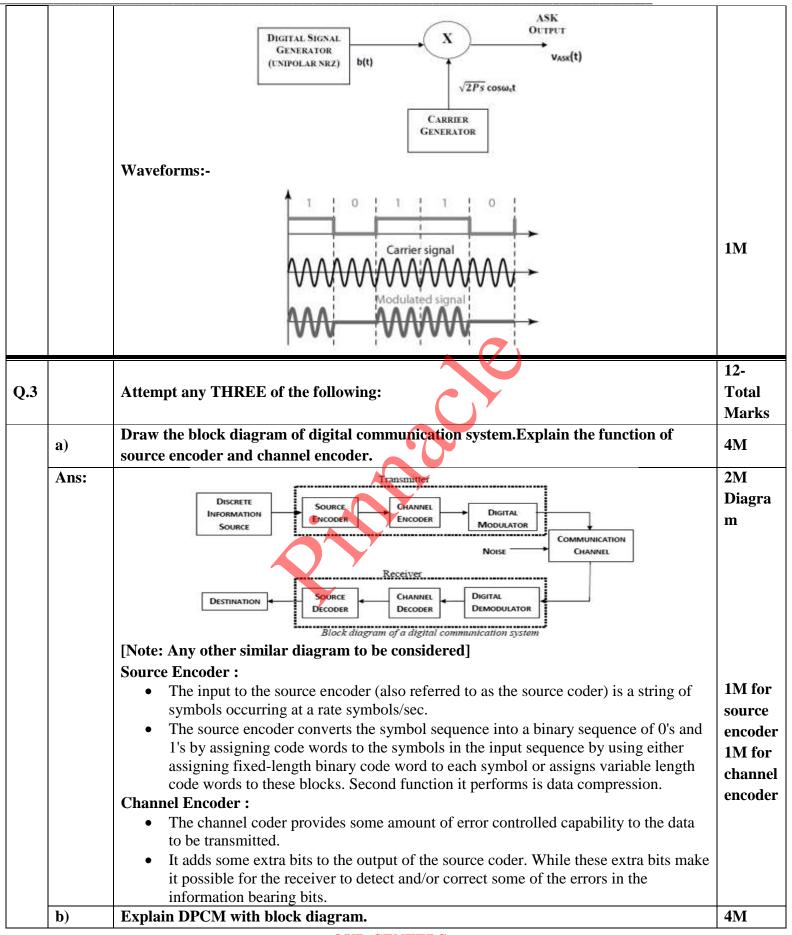


Figure.2 (a) Modulating signal (b) sampling signal and (c) Flat top sampling spectrum

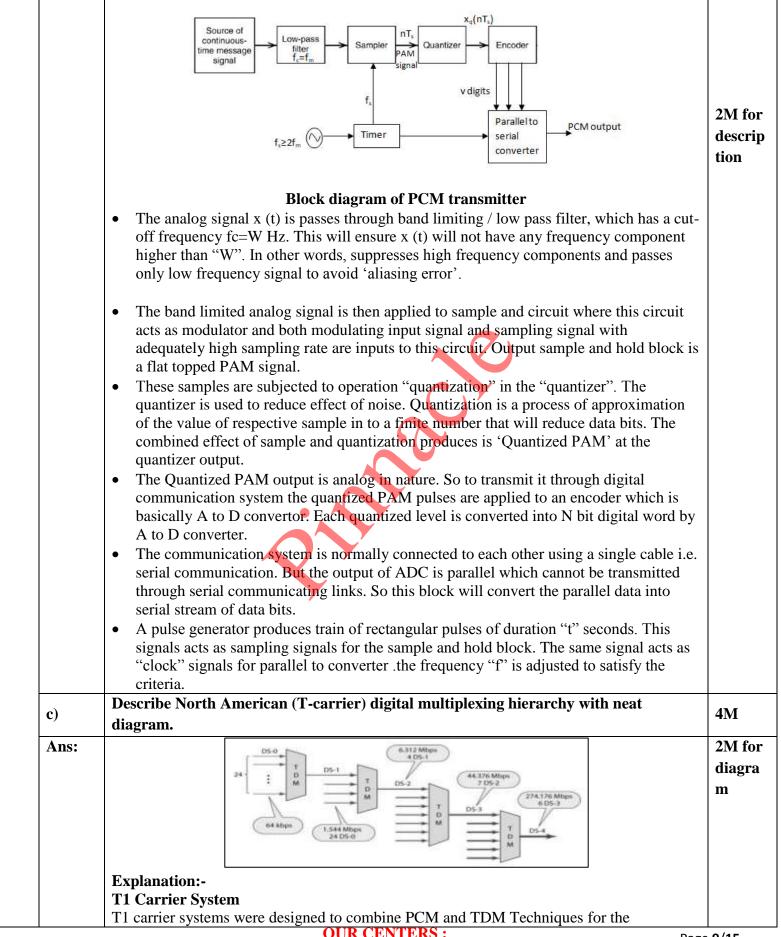
- The starting edge of the pulse corresponds to the instantaneous value of the modulating signal x (t).
- Flat top sampling can be mathematically considered as convolution of the sampled signal and the pulse signal.


d)	Describe amplitude shift keying (ASK) modulation with suitable circuit diagram.	4M
Ans:	 Explanation:- ASK MODULATOR: The process where a binary information signal directly modulates the amplitude of an analog carrier. The digital signal is used to switch the carrier between amplitude levels is called Amplitude Shift Keying (ASK). The ASK technique of binary modulation is illustrated in Figure where modulating signal consists of unipolar pulses. Because in this case the carrier is switched ON and OFF, this method is also known as <i>ON-OFF keying</i>. For the entire time the binary input is high, the output is a constant amplitude, constant frequency signal and for the entire time the binary input is low, the carrier is off. ASK is given by: V_{ASK}(t) = b(t) √2Ps cosωct 	2M
	Block diagram of ASK Transmitter / ASK modulator:-	1M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Ans:		Difference amplifier S	Sample and hold Quantizer S ₀ (t) Encode	Parallel DPCM to serial output	2M diagra m
			(Block Diagram of DPCM	D	
	sign is later than the same of	nal and x^(t) is its aparger or smaller than each sampling instantion ple and hold circuit edifference signals antizer. The quantizer am of bits as explaite quantizer output it	s the block diagram of DPCM trapproximated signal. What is important to any signal in x(t) and by how much. In the difference amplifier comparts will hold the result of this subtract the output of sample and hold er output SO(t) is the transmitted and in conventional PCM system.	ansmitter $x(t)$ is the analog input ortant to know is whether $x^*(t)$ ares $x(t)$ and $x^*(t)$ and the action. circuit is quantized by the as it is or it is encoded into a n. oximated signal $x^*(t)$ by passing	2M explana tion
c)			IA and CDMA (any four point		4M
Ans:	Sr.	Parameter	TDMA	CDMA	1 mark
	No.				for
	1.	Definition	Entire bandwidth is shared among different subscribers at Fixed predetermined or dynamically assigned time intervals/slots.	Entire bandwidth is shared among different users by assigning unique codes.	Each point (Any 4
	2.	Bandwidth Available	Time sharing of satellite transponder takes place	Sharing of bandwidth and time both takes place	point s)
	3.	Synchronization	Synchronization is essential	Synchronization is not necessary	
	4.	Interference	Due to incorrect synchronization there can be interference between the adjacent time slots.	Both type of interference will be present	
	5.	Guard bands	Guard times between adjacent timeslots are necessary.	Guard bands and Guard times both are necessary	
	6.	Active terminals	Terminals are active in their specified slot on same frequency	All terminals active on same frequency	
	7.	Signal separation	Synchronization in time	Code separation	
	8.	Near Far Problem	No	Yes	
	9.	Handoff	Hard handoff	Soft handoff	
	10.	Application	Advanced mobile phone, system(AMPS), Cordless telephone	IS95 Wide band, CDMA 2000,2.5G and 3G	


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

	d)	Compare FDM & TDM systems (any four points).					
	Ans:	Sr. FDM TDM					
		1	Divides the channel into the two or more frequency ranges that do not overlap.	Divides and allocates certain Time periods to each channel.	point		
		2	Code word is not required	No coding			
		3	Needs guard bands	Needs guard time			
		4	Problem of crosstalk	No problem of crosstalk			
Q.4		Attem	pt any THREE of the following:		12- Total Marks		
	a)				4M		
	Ans:	State the Shannon Hartley's theorem for channel capacity. Explain the effect of S/N ratio and bandwidth on channel capacity. In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be transmitted over a communications channel of a specified bandwidth in the presence of noise. According to Shannon, the bandwidth of the channel and signal energy and noise energy are related by the formula C = W log₁(1 + S/N) where C is channel capacity in bits per second (bps) W is bandwidth of the channel in Hz S/N is the signal-to-noise power ratio (SNR). SNR generally is measured in dB using the formula (S/N) dB = 10 log(Signal power / Noise power) Effect of S/N on Channel Capacity C: If the communication channel is noiseless then N = 0. Therefore, S/N → ∞ and so C also will tend to ∞. Thus the noiseless channel will have an infinite capacity. Effect of Bandwidth B on Channel Capacity C: Consider that some white Gaussian noise is present. Hence (S/N) is not infinite as N ≠ 0. Now as the bandwidth approaches infinity, the channel capacity C does not become infinite because, N =ηB will also increase with the bandwidth B. This will reduce the value of S/N					
	b)	Descri	be PCM transmitter with block diag	ram.	4M		
	Ans:		Source of continuous-time message signal Sampler	Quantizer PCM signal pplied to channel input	2M for block diagra m		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Transmission of 24 64Kbps channels with each channel Capable of Carrying Digitally. Encoded voice band telephone signals or data. The transmission bit rate (line speed) for 2M for a T1 carrier is 1.544 Mbps. All 24 DS-0 channels combined has a data rate of 1.544Mbps, this digital signal level is explana Called DS-1. Therefore T1 lines are referred as DS-1 lines. tion Service Line Rate (Mbps) Voice Channels 1.544 24 DS-2 T-2 6.312 96 DS-3 T-3 44,736 672 DS-4 T-4 274.176 4032 **DS** and T Line rates **T2** Carrier System T2 carriers time division multiplex 96 64-Kbps voice or data channels into a single 6.312 Mbps data signal for transmission over twisted pair copper wire up to 500 miles over a special metallic cable. T3 Carrier system T3 carriers Time division multiplex 672 64-kbps voice or data channels for transmission over a single coaxial cable. The transmission rate is 44.736 Mbps. **T4 Carrier System** T4 carriers time division multiplex 4032 64-kbps voice or data channels for transmitting over a single T4 coaxial cable upto 500 mile. The transmission rate is very high i.e. 274.16Kbps. **T5** Carrier System T5 carriers time division multiplex 8064 64Kbps voice or data channels and transmit them at 560.16Mbps over a single coaxial cable. d) Explain direct sequence spread spectrum (DSSS) transmitter with block diagram. **4M** 2M for Ans: diagra m equence Transmitter side 2M for In direct sequence, the serial binary data is mixed with a higher frequency pseudorandom binary code at a faster rate and the result is used to phase-modulate a carrier. explana The information signal undergoes primary modulation by PSK, FSK or other narrow band tion modulation and secondary modulation with spread spectrum modulation. Spread spectra are obtained by multiplying the primary modulated signal and the square wave, called the PN sequence. Contrariwise, as with commercial radio, there are cases where spread modulation is applied to the data first, and narrow band modulation such as PSK or FSK is applied afterwards. The figure below is an example **Hamming code for the data 1010 with odd** parity. le of spread spectrum modulation and demodulation using PSK for primary modulation. **4M** e) Construct the Hamming code for the data 1010 with odd parity. Let us find the Hamming code for binary code, $d_4d_3d_2d_1 = 1010$. Consider even parity bits. 1M for Ans: The number of bits in the given binary code is n=4. calculat We can find the required number of parity bits by using the following mathematical ing no. relation. of $2k \ge n + k + 12k \ge n + k + 1$

OUR CENTERS:

		Substitute, n=4 in the above mathematical relation. ⇒2k≥4+k+1⇒2k≥4+k+1 ⇒2k≥5+k⇒2k≥5+k The minimum value of k that satisfied the above relation is 3. Hence, we require 3 parity bits p ₁ , p ₂ , and p ₃ . Therefore, the number of bits in Hamming code will be 7, since there are 4 bits in binary code and 3 parity bits. We have to place the parity bits and bits of binary code in the Hamming code as shown below. • For a 4-bit code there are 3 parity bits p1, p2 and p3 at location 1, 2 and 4 resp. • So, the code will be: "p1 p2 n1 p3 n2 n3 n4" where, n1, n2, n3, n4 are bits of the code and p1,p2 and p3 are parity bits to be calculated • Therefore, the code for even parity is calculated as below: statement Bits Odd Parity for bits 1,3,5,7 P1					parity bits. 3 marks for calculat ing hammi ng code				
		Therefore ODI				be 01100:	10				
Q.5	(a) A discrete memory less source has an alphabet of seven symbols with probabilities for							es foe	Total Marks		
		its output give	1		1			l C	T C	1	
		Symbol Probability	S ₀ 0.25	S ₁ 0.25	S ₂ 0.125	S ₃ 0.125	S ₄ 0.125	S ₅ 0.0625	S ₆ 0.0625		
Compute: (i) Huffman code for the above source.								VIOUME	J		
	Ans:	(ii) The coding efficiency of the designed Huffman code. The Huffman code for the source is: The Huffman code for the source is: Stage Stage								2M	

Dipogele
DEGREE & DIPLOMA
ENGINEERING

Symbol	Probability	Codeword	Codeword length	2
So	0.25	10	2 bit	
Si	0.25	11	2 bit	
S ₂	0.125	001	3 bit	
S	0.125	010	3 bit	
S ₄	0.125	011	3 bit	
S	0.0625	0000	4 bit	
S ₆	0.0625	0001	4 bit	
. L -	+ (0.0625 × 4): 2 625 hits/symbol rage information	si 🧪		
	$H = \sum_{i=0}^{\infty} p(x_i)$			
H =	i = 0 [0.25 log ₂ (4)] + [0.0625 log ₃ ([0.25 × 2] (2) 2.625 hits/revens	*2+[0/125] (6)]×2 -[0/125×3×:	og ₂ (8)]×3 3]+[0.0625×4×2]	

	Sr. No	Parameter	Binary ASK	Binary FSK	Binary PSK	each for a
	1.	Variable Characteristic	Amplitude	Frequency	Phase	6 vali
	2.	Maximum bandwidth(Hz)	$2f_b$	5 f _b /3	2f _b	
	3.	Noise immunity	low	high	high	
	4.	Error probability	high	low	low	
	5.	Performance in presence of noise	poor	Better than ASK	Better than FSK	
	6.	Complexity	Simple	Moderately complex	Very complex	
	7.	Bit rate	Suitable upto 100 bits/sec	Suitable upto about 1200 bits/sec	Suitable for high bit rates	
	8.	Detection method	Envelope	Envelope	Coherent	
(c)	_		tion reduces slope ov tion". Justify the abov		_	6M
Ans:	both ca modula	ADM transmitter As shown, X x(t). Both the Comparator Comparator Sample & ho if the signal 3 times etc. The variable falling signal To reduce g	(t) is the analog input sees signal are applied to output goes high if x(t) output is either 1 or 0. Id circuit will hold this less rising in the same dire of the signal is falling stees step size will make the thus slope overload distranular distortion steps	ADM wignal & x' (t) is the comparator. >x'(t) & it goes low evel for entire clocation then step size p size is increased modulator to track tortion can be minimize should be made	vaveform e quantized version v if x(t) <x'(t). .="" 2="" and<="" be="" c="" cycle.="" direction="" e="" fast="" in="" k="" made="" rising="" th="" that="" thus="" tir="" will=""><th>elta drawlecks in DM 1M for ADM Block diagram 2M for ADM waveful</th></x'(t).>	elta drawlecks in DM 1M for ADM Block diagram 2M for ADM waveful

Q.6		Attempt any TWO of t	he following:		12 Marks	
	(a)	Explain QPSK transmi	itter with block diagram its	constellation diagram.	6M	
	Ans:				2M for	
					block	
			$\sqrt{2F_{e}}\cos \omega$		diagra	
			8,40 BALANCED MODELATO		m	
		B.	NARY NRZ BINARY Excedite	ADDER -		
			BALANCED MODULATO			
			b,/0	5,00	2M	
			√2P _a tin e QFSE Descriptor tunn -		explan	
		Operation:	equence is first converted into a b	pinolar NPZ signal h(t). The value	tion	
		 of b(t) = + 1 for logic 1 input and b(t) = -1 when the binary input is equal to 0. The Demultiplexer(DEMUX) will divide b(t) into twoseparate bit streams bo(t) and be(t). The bit stream be(t) consists of only the even numbered bits 2, 4, 6, 8, whereas bo(t) bit stream consists of only the odd numbered bits i.e., 1, 3, 5, as shown in Figure 3.18. Each bit in the even and odd stream will be held for a period of 2Tb. This duration is called as symbol duration Ts. Thus, every symbol contains two bits. The bit stream be(t) is superimposed on a carrier coswct and the bit stream bo(t) is superimposed on a carrier sinwct by using two balanced modulators (or multipliers) to generate se(t) and so(t). These two signals are basically BPSK signals. These signals are then added to generate the QPSK output signal given by, vQPSK(t) = bo(t) sinwct + be(t)coswct Bit sequence OO D1 10 11 2 bits 2 bits 2 bits 2 bits 				
			er		2M	
			4	→ I(t)	constell	
			00 10	N24 - MAI	ation	
			Ţ		diagra	
			Constellation diagram	of QPSK	m	
	(b)	Distinguish between m	-ary PSK & m-ary FSK tecl	hniques.(Any six points)	6M	
	Ans:	Parameter	M-ary PSK	M-ary FSK	1M	
		Number of bits per	$N [M = 2^{N}]$	$N [M = 2^{N}]$	each	
		symbol			for any	
		Symbol duration	$T_S=NT_b$	$T_S=NT_b$	6 valid	
		Variable parameter	Phase	Frequency	points	
		variable parameter			Pomis	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

	Method			
	Bandwidth	2fb/N	2 N+1fb/N	
	Probability of Error	More than that in M-ary FSK	Less than that in M-ary PSK	
	Transmitted signal	$\sqrt{2f_s} \cos (\omega_c t + \phi_m)$ $\therefore \phi_m = (2m + 1) \pi/4$		
(c)	Explain fast frequency advantage and disadvan	hopping techniques with suitab ntages.	le waveforms. State its	6M
Ans:	 In Fast Frequency symbol. The hop rate is hi For each symbol symbol such that 	gher than symbol rate but chip raseveral hops takes place. So sever symbol rate Rs< Hop rate Rh detect this signal because one symptomer.	ate is equal to hop rate ral frequencies changes for one mbol is transmitted using more	2M explana tion 2M diagra m
	 3. Shorter time for a 4. Robust technolog Disadvantages: 1. Bandwidth requir 2. Lower Coverage 	nsmission as only transmitter and acquisition y ement is more [GHz] range due to high SNR requirements and the solution of	ent at receiver	1M each for any one adavan tage and disadva ntage